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Abstract
Minimizing and quantifying the uncertainty of wind simulations are essential for the wind energy industry
during the planning phase of wind farm projects and for financial considerations. Measurements at 118 sites
onshore and offshore in Germany are analyzed and used for the verification of wind simulations with the
mesoscale model WRF. In order to minimize the difference between simulations and observations a correction
of the annual cycle is applied and a remodeling approach is developed which allows for a correction of the
simulated wind speed time series. The remodeling methodology is based on a linear regression analysis of
simulated and observed wind speed time series accounting for sub-grid variations of orography and roughness.
Averaging the regression parameter for 26 measurement sites results in an overall global parameter set which
is applied to the wind atlas data. While the “raw” data (without optimization) before any correction showed
differences of up to 30 % with respect to the annual mean wind speed the remodeling process reduced the bias
to below 5 % for the majority of measurements. When being compared with data from the NEWA wind atlas
and the EMD-WRF Europe+ data set an overall bias between 0.6 m/s and 0.8 m/s is found for the NEWA,
EMD-WRF Europe+ and anemos “raw” data. This bias is reduced to zero with a small standard deviation
when the remodeling process and the site-specific adaptation are applied.
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1 Introduction
The wind energy industry has developed dramatically
during the last three decades and wind power now has
a major share in the transformation from fossil fuels to
renewable energy. Parallel to this trend wind power me-
teorology has evolved with focus on three main areas,
namely the short-term prediction of electricity produc-
tion, site suitability (turbulence and extreme winds in or-
der to estimate the mechanical stress on wind turbines)
and resource assessment. Reducing the uncertainty in
wind speed and direction simulations is of utmost impor-
tance for wind farm developers, investors and financing
institutions. Even small errors can have a large impact
on financial considerations as the electricity production
by wind turbines increases non-linearly with respect to
wind speed. Therefore, it remains a major challenge for
the wind power meteorological community to minimize
the uncertainty in wind resource assessment to the extent
possible. This study focuses on resource assessment on
regional to local scales and the quantification of its un-
certainty through the comparison of model simulations
with observations.

Since its early stages wind resource assessment has
been based on statistical methods (Petersen et al.,
1981; Mengelkamp, 1999; Mengelkamp et al., 1997;
Badger et al., 2014). Estimating the site-specific wind
potential in terms of the wind speed frequency distri-
bution has been the preferred approach for energy yield
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calculations (Serban et al., 2020) and is still widely ap-
plied today. However, approximating the energy of the
wind by statistical means is never totally perfect com-
pared to time series. Moreover, wind turbines have to
be shut down temporally i.e. for noise reduction or bat
protection during nighttime and time series analysis is
required to accurately estimate the yield losses. When
information is needed of the market value of the elec-
tricity produced a temporal correlation with the variable
stock exchange price for electricity is essential. Highly
accurate site-specific time series of the energy yield are
appropriate means to meet the requirements for sound
financial considerations during the wind farm planning
phase. As the life time of wind turbines is assumed more
than 20 years the time series should span a climatologi-
cally relevant time period of a similar length.

Reliable wind information over two or more decades
is rarely available from observations. Except a few tow-
ers for research purposes the majority of observations of
wind speed and wind direction takes place near the sur-
face and is influenced by surface characteristics (orogra-
phy, roughness, obstacles) in the immediate surrounding
(Wieringa, 1980, 1996). Weather station data seem to
be the first choice but Lindenberg et al. (2012) have
shown that such data are inconsistent in time due to
changes in the instrument location or due to changes
in surface characteristics of the surrounding area. In
addition, near surface measurements do not reflect the
wind conditions (i.e. the diurnal cycle, low level jets) in
heights over 100 m which is exceeded by modern wind
turbine hub heights. Site-specific wind measurements

© 2022 The authors
DOI 10.1127/metz/2022/1102 Gebrüder Borntraeger Science Publishers, Stuttgart, www.borntraeger-cramer.com

http://www.borntraeger-cramer.de/journals/metz
http://www.borntraeger-cramer.de/journals/metz
https://creativecommons.org/licenses/by-nc/4.0/
http://www.borntraeger-cramer.com


118 M. Schneider et al.: A wind atlas for Germany and the effect of remodeling Meteorol. Z. (Contrib. Atm. Sci.)
31, 2022

during the planning phase of a wind farm commonly
only span a short time period of usually 12 months and
require a long-term correlation with a consistent long-
term wind data set. In addition, hub heights of modern
wind turbines will often reach more than 150 m. Mea-
surements at these heights are cost intensive and are of-
ten aimed to be avoided.

Downscaling reanalysis data by use of a mesoscale
model seems an appropriate approach to derive regional
or local scale wind information. Motivated by the im-
portance of mesoscale model simulations for the wind
industry the Weather Research and Forecast mesoscale
model WRF (WRF, 2017; Skamarock et al., 2008) has
become a major tool for investigations into wind condi-
tions and sensitivity studies. The latter mainly examine
the influence of different PBL schemes (Fernández–
Gonzales et al., 2018, Yang et al., 2013), or a com-
bination of PBL schemes, grid configuration and initial
conditions (Siuta et al., 2017). Carvalho et al. (2014)
applied different reanalysis data sets to drive the meso-
scale model WRF and compared the simulated hourly
time series of wind speed and -direction with observa-
tions. An overall positive wind speed bias is explained
by the smoothing of orography in the model caused by
its limited spatial resolution. There was no best model
configuration for all conditions and an ensemble of
model runs is often suggested (Fernández-Gonzales
et al. 2018, Siuta et al., 2017, Deppe et al., 2013) to-
gether with some kind of bias correction when using
model simulations for “real world” applications such as
financial considerations (Siuta et al., 2017, Deppe et al.,
2013).

Weiter et al. (2019) follow the idea of using the
electricity production from wind turbines directly for
the verification of wind simulations. They transferred
wind speed time series from simulations with the WRF
model to production by use of the respective wind tur-
bine power curves. The production data from opera-
tional wind turbines were analyzed very carefully in
order to reflect the wind conditions without any influ-
ence of the wake effects and operation mode of the tur-
bines. For 10-min data from 50 turbines in 12 wind-
farms the relative bias in production ranges between
10 % and 25 % which in terms of wind speed means a
bias of 4 % to 10 % for the annual mean. This seems to
be an acceptable uncertainty for financial considerations
in the wind industry. In order to reach such small uncer-
tainty numbers a bias correction was applied to the wind
speed time series.

This paper aims at optimizing a wind atlas for Ger-
many by a remodeling process and verifying the opti-
mized wind speed time series. It is organized as follows.
Details of the wind atlas simulation are given in the
next section. The observational data used for the adap-
tation and verification are described in Section 3 and
the remodeling approach and its expansion compared to
the approach described in Weiter et al. (2019) in Sec-
tion 4. Section 5 presents the comparison of model sim-
ulations with observations. There are two further wind

data sets almost identical to the one described in this pa-
per. The New European Wind Atlas (Gottschall et al.,
2019; Witha et al., 2019; González-Rouco et al.,
2019; Dörenkämper et al., 2020) and the EMD-WRF
Europe+ (ERA5) mesoscale data set (EMD, 2020a, b)
both were simulated with the mesoscale model WRF
with 3 km horizontal resolution based on ERA5 reanaly-
sis data. These two data sets cover all of Europe and are
described and compared to our data set with the same
forcing data and the same horizontal resolution for the
WRF mesoscale model for Germany in Section 5.4. Sec-
tion 6 comprises a summary and a brief outlook.

2 Model set-up and wind atlas
simulation

The mesoscale model WRF (Weather Research & Fore-
casting Model version 3.7.1) (Skamarock et al., 2008;
WRF, 2017) is used to downscale ERA5 reanalysis
data (C3S, 2017) to the region of Germany (Fig. 1).
A two-way nesting approach is realized to downscale
the ERA5 reanalysis data with a horizontal resolution
of approx. 30× 30 km2 to two domains with 9× 9 km2

for the outer domain and 3× 3 km2 for the inner nested
domain, respectively. 50 vertical levels are prescribed
up to the upper boundary at roughly 15 km height with
14 levels in the lowest 300 m which are most relevant for
wind energy applications. Initial and boundary condi-
tions were taken from the ERA5 data which are nudged
(grid nudging method) into the WRF model every hour.
The specific and the relaxation zone (the first five rows
and columns in each domain) have boundary conditions
from the reanalysis or values blended from the coarser
domain, respectively. The WRF User Guide provides
more information on the model operation.

Model output is stored every 10 minutes for a tran-
sient simulation starting in 1997 and still continuing.
Thus, more than 24 years simulation are currently avail-
able. Different long-year simulations were distributed on
several CPU with a one-month spin-up time each.

Orography data are taken from the SRTM (Shuttle
Radar Topography Mission, USGS EROS Data Center,
Farr et al., 2007) and interpolated from its 90 m resolu-
tion onto the model grid. Vegetation and roughness in-
formation is provided by the CORINE data (Keil et al.,
2010) of the European Environment Agency and is inter-
polated from its 100 m resolution. Soil temperature and
soil moisture at 4 soil levels and snow cover are taken
from the ERA5 data set (C3S, 2017).

The WRF model contains many different schemes
for the parameterization of physical processes. WRF’s
physics parameterization considered here is the Yon-
sei University (YSU) planetary boundary layer scheme,
the Monin-Obukhov surface layer description, the Noah
land surface model including Mosaic 4, the RRTM
scheme for the longwave radiation, and the Dudhia pa-
rameterization for the short-wave radiation. No cumulus
parameterization is applied (Skamarock et al., 2008).
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Figure 1: WRF model domain over Germany. Multiple Nesting with domain 1 (9× 9 km2) and domain 2 (3× 3 km2).

Despite the many sensitivity studies mentioned the one
optimal set-up for wind energy applications hardly ex-
ists. A model performing best in a certain situation over
a certain region may not do so at other circumstances. In
several of the studies cited ensemble simulations were
suggested to be most appropriate. However, limited re-
sources did not allow us to perform ensemble simula-
tions nor to undertake extensive sensitivity studies as
done by Olsen et al. (2017) and Hahmann et al. (2020).
Also, ensemble and sensitivity studies reflect the be-
havior of different model set-ups rather than the uncer-
tainty with respect to observations which only is rel-
evant for wind energy applications. As the near sur-
face winds are most sensitive to the choice of the PBL
scheme (Hahmann et al., 2020) an investigation into the
most appropriate PBL scheme for wind simulations has
been undertaken comparing the wind conditions above
100 m height at 10 sites as simulated with the YSU
and MYJ PBL schemes for August and December 2012.
These schemes are widely applied in WRF simulations
and seem to be appropriate for wind simulations in the
boundary layer (Hu et al., 2010, 2013), A best scheme
for all situations and sites cannot be proposed (Gian-
nakopoulou et al., 2014). The YSU scheme performed
reasonably when wind speed profiles and the diurnal cy-
cle were compared to measurements at our 10 sites.

3 Observational data

It is with the growing wind industry during the last
two decades that a reasonable number of meteorologi-
cal towers has been installed with heights of more than
100 m meanwhile. These towers usually are operated
only for a period of one year and are privately owned.
Given access to their data they form an excellent data
base for model verification. This also holds for lidar

measurements which, with increasing wind turbine hub
height, become more advantageous by reason of finan-
cial and permit issues. A few research towers are oper-
ated by public institutions onshore and offshore within
the model domain for periods of several years. In this
study we used data from onshore and offshore research
towers and short term measurements for wind farm plan-
ning purposes at met masts and with lidar devices. The
observational uncertainty is considered very low as all
towers and lidar measurements were erected for wind
energy planning purposes and followed international
recommendations (IEC, 2017) or were installed as re-
search towers. Calibration sheets for all anemometers of
the wind energy towers and for all lidar systems were
available. The instrumentation of the research towers is
considered to be maintained on a regular basis. All data
were measured as 10-min averages and aggregated to
hourly values for the verification while the remodeling
approach is based on the 10-min measurements.

Two data sets are used for this study. Data set 1
comprises data from 48 onshore met masts and lidars
of which 26 are used for the remodeling process and
22 for the independent verification. Measurements at
the four offshore masts FINO1 (North Sea), FINO2
(Baltic), FINO3 (North Sea), and NordseeOst (North
Sea) are used for the verification and separate offshore
remodeling. All these data are at the hands of anemos.
In order to support the verification results with a second
independent data set wind speed time series of the wind
atlas simulation were provided to the consulting com-
pany Ramboll for 66 locations at which they had tall
mast and lidar measurements available from their con-
sulting activities. It is ensured that those data are of sim-
ilar very high quality as the first data set and that they
are analyzed in a similar way. The analysis of the mea-
surements covers a plausibility check, identification of
icing periods and missing values for any reason and a
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Figure 2: Geographical distribution of measurement sites.

correction for mast shadow effects in case of only one
anemometer per height was installed. If two anemome-
ters were installed at the respective height pointing into
opposite directions the undisturbed data were used. A
correlation among all wind measurements at the same
mast helped to identify any implausible data. In summer
2009 east of FINO1 the offshore wind farm “alpha ven-
tus” was erected with influence on the FINO1 measure-
ments for easterly winds. Only FINO1 data before this
date are used in this study. Similarly, if disturbances oc-
curred during the measuring period e.g. due to extension
of a wind farm, this particular met mast was excluded
from this study or data from times before the disturbance
affected them were used only. For each measurement
station a 12-month period was selected, but not neces-
sarily the same period for all stations, because the simu-
lation covers more than 24 years. All measurement sta-
tions should reach data availability of at least 80 %. Pe-
riods of missing observations were also eliminated from
the respective simulated time series. The measurements
were distributed all over Germany with the majority of
them in complex terrain in the southwestern parts, two
in the western part of Poland and one in the northern part
of Switzerland. (Fig. 2).

4 Verification and remodeling

We denote the wind speed at different stages of the
remodeling process as follows.

ucell raw
WRF is the raw wind speed as simulated in the

model grid cell center without any adaptation.
usite raw

WRF is the raw wind speed before the remodeling
process but made comparable to the site of a wind mea-
surement according to step 2.

ucell rem
WRF is the wind speed at the grid cell center after

the remodeling described in step 3.
usite rem

WRF is the wind speed after the remodeling pro-
cess made comparable to wind measurement sites fol-
lowing step 4 resp. step 2.

A verification is performed twice, before and af-
ter the remodeling process in order to demonstrate the
effect of the remodeling on the wind atlas. For both,
the verification and the remodeling process observations
and model simulations have to be made comparable.
While the model grid cell height is an average for the
3× 3 km2 area a met mast for wind energy purposes
commonly is placed at an exposed location advanta-
geous for wind farm operation. An elevation and rough-
ness correction for wind speed is applied on the model
data that accounts for speed-up effects over unresolved
crests (Howard and Clark, 2007). This correction has
been developed with the computational fluid dynamics
(CFD) code Meteodyn WT (2015). The difference be-
tween the site-specific wind speed and the wind speed
at the 3 km grid cells was compared at 10 sites to the
height difference Δh = hsite − hcell and the roughness
difference Δz0 = z0site − z0cell. It results in the empiri-
cally derived speed-up factors α and β. This correction
accounts for the height difference Δh between the ele-
vation asl of a particular measurement site and the ele-
vation of the model grid cell and the difference Δz0 in
roughness length. Because the roughness tables for Me-
teodyn and WRF differ but are both based on the Corine
data set, the roughness table from WRF was transferred
into the roughness table for Meteodyn. The correction
changes the original model wind speed output ucell raw

WRF to
the wind speed usite raw

WRF adapted at the site of the mea-
surements but still with systematic errors of the simula-
tion. This step only makes the simulated data compara-
ble to the measurements at a particular site

usite raw
WRF = ucell raw

WRF · (1 + Δh · α + Δz0 · β) (4.1)

with α and β being constants in units of m−1 empiri-
cally derived at 10 sites different from the ones used in
this study. α and β were developed from speed-up fac-
tors found by CFD model simulations at the respective
10 sites.

4.1 Remodeling

An optimization approach is applied to the wind speed
time series of the lowest levels up to 300 m of the site-
adapted raw WRF simulation usite raw

WRF .
The remodeling process is based on a comparison of

simulated wind speed time series usite raw
WRF with observa-

tions at 26 met masts onshore in a height range of 80
to 140 m. A separate correction function was derived for
the offshore met masts. Because there were only 4 off-
shore masts no independent data were available for the
verification.

The remodeling or optimization of the simulated
wind speed ucell raw

WRF basically consists of four steps:
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1. The first step is a correction of the annual cycle of the
“raw” wind speed data of the WRF simulation on the
3× 3 km2 grid (ucell raw

WRF ). Since ERA5 reanalysis data
and consequently the raw data of the wind atlas from
the WRF simulation driven by ERA5 show a bias
of the annual cycle, a correction of this was imple-
mented in the optimization approach. The monthly
bias of 48 onshore stations was analyzed. The mean
bias of each month is used to determine a correc-
tion function for the annual cycle. Finally, a peri-
odic function with amplitude and phase derived from
the mean bias values generates time dependent and
periodic scaling factors for each 10-min time step.
This scaling factor time series is multiplied with the
wind speed time series. This approach successfully
minimized the monthly bias and did not impair other
statistical parameters. The annual cycle correction is
based on the bias of all 48 onshore met masts while
the following remodeling steps use only 26 data sets
for training. A separate annual cycle correction was
derived for the offshore locations.

2. At this stage the simulated wind speed time series on
the 3× 3 km2 grid ucell raw

WRF are made comparable to
the observations with a correction based on elevation
and roughness according to equation (4.1) resulting
in usite raw

WRF .

3. In a third step, both modeled usite raw
WRF and observed

uobs wind speed data with 10-min resolution are par-
titioned into eight wind direction sectors to account
for various surface characteristics depending on wind
direction sector δ. A linear regression analysis

uobs(δ) = m(δ) · usite raw
WRF + b(δ) (4.2)

follows for simulated and observed wind speed pro-
viding regression coefficients for each measurement
site and 8 wind direction sectors, respectively.

There are now 16 regression coefficients for each of
the 26 measurement sites (offset and slope of the re-
gression line for each of 8 wind direction sectors).
Following Staffell and Pfenninger (2016) and
Thøgersen et al. (2007) a multiple linear regression
analysis is performed separately for slope and off-
set parameter taking into account sub-grid informa-
tion. The sub-grid information is taken from the re-
spective variables on a 1× 1 km2 grid within each
3× 3 km2 cell for the height (x1), the height dif-
ference between the respective 1× 1 km2 grid and
3× 3 km2 cell (x2), the latitude (x3) and the surface
roughness (x4). For each of the 26 sites (i) and for
each of 8 direction sectors (j) this results in the equa-
tion for m

mi, j = c0i, j + c1i, j · x1i, j + c2i, j · x2i, j

+ c3i, j · x3i, j + c4i, j · x4i, j (4.3)

and for bi, j accordingly. A multiple linear regression
is applied on these sets of equations resulting in a set

of global slope and offset parameter c0 to c4

m′ = c0 + c1 · x1 + c2 · x2 + c3 · x3 + c4 · x4 (4.4)

and similarly for b′. The goal of this step is the calcu-
lation of global slope- and offset-parameter (c0–4) for
the investigated type of sub-grid information (x1–4)
from the training data. Finally, the c1 till c4 parame-
ters are in a range between zero and one.

With the global scaling parameter derived from the
26 training met masts scaling factors are applied
for the wind speed at each model grid cell taking
into account the respective sub-grid information. The
scaling factors are applied for each wind direction
sector and result in a corrected simulated wind data
set ucell rem

WRF for the 3× 3 km2 grid cells.

4. Site-specific time series usite rem
WRF are calculated from

the 3× 3 km2 data ucell rem
WRF by applying step (2) again

but now on the remodeled data.

The remodeling process changed the wind speed fre-
quency distribution and the vertical wind speed profile at
some sites in a non-acceptable way. Constraints for the
frequency distribution were applied in the remodeling
approach to minimize the error. A 0.1 % bias threshold
was implemented for both tails of the frequency distribu-
tion, so that the mi, j and bi, j were slightly rescaled in the
remodeling process until this threshold has reached. The
analysis of different heights in the remodeling approach
resulted in a vertical correction of the global parame-
ters to reduce the bias at most of the heights. This verti-
cal correction is handled by a height dependent scaling
factor derived as a mean from the training set. The raw
and corrected vertical profiles for station 19 are shown
in Fig. 4 exemplary and the wind speed frequency dis-
tribution in Fig. 5.

The results of the remodeling process were verified
with data from 48 onshore met masts. The raw data
ucell raw

WRF show a clear positive bias of 0.7 m/s while a
slight overcorrection of the remodeling on the 3× 3 km2

grid (ucell rem
WRF ) results in a negative bias of −0.4 m/s. Site-

specific time series usite rem
WRF show no mean bias and also

the lowest bias variation (Fig. 6).

4.2 Verification metrics

The primary objective of the wind atlas is its use for
wind energy purposes. This basically requires frequency
distributions of wind speed and -direction to character-
ize the local or areal wind climate. Additional informa-
tion is provided by time series which reflect the temporal
variability of the wind speed.

The mean wind speed is denoted as ū and calculated
as

ū =
1
n

n∑

i=1

ui (4.5)
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Figure 3: Bias in simulated monthly mean wind speed at 48 measurement locations. Right: Raw data, Left: after correction (line: mean bias,
dots: individual measurements)

Figure 4: Exemplary vertical profiles of wind speed before (red) and
after (blue) the remodeling process for measurement site 19.

with n being the total number of hourly data. The Pear-
son correlation coefficient R

R =

∑n
i=1(uobsi − ūobs)(uWRFi − ūWRF)

σuobsσuWRF

(4.6)

is a measure for the temporal interrelation between mea-
sured “obs” and simulated “WRF” data.

The bias as the difference between mean values
ūWRF − ūobs or their ratio ūWRF/ūobs points out a sys-
tematic deviation.

Biasū = ūWRF − ūobs (4.7)

And the mean bias is:

Bias =
1
m

m∑

j=1

Bias j (4.8)

with m being the number of verification sites. The stan-
dard deviation of the bias is

σBias =

√√√
1
m

m∑

j=1

(Bias j − Bias)2 (4.9)

Model data are instantaneous data every 10 minutes and
observations are averages over a 10-min time interval.
The remodeling procedure is based on these 10-min data
while the verification is based on 1 h averages which
should minimize the differences and is considered ad-
equate for the verification of the diurnal cycle. A small
shift in timing of changes in wind speed may lead to
lower correlations, which, however, are insignificant for
wind energy planning purposes (This paper does not
cover short-term forecasts).

5 Results

5.1 Bias and correlation of hourly wind speed

Based on the 26 data sets involved in the remodeling
process a general correction function was derived by a
multiple linear regression model for the slope and off-
set parameter. This general correction function was then
applied to each of the raw data sets. These data sets are
considered “semi-independent” as their specific correc-
tion function was used to derived the overall mean cor-
rection function but the latter was applied for the final
correction. The same argument holds for the offshore
met masts. The remaining 22 onshore data sets not used
for the remodeling process are considered independent.
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Figure 5: Exemplary wind speed frequency distribution of the raw data (left) and after the remodeling process (right) for measurement
site 19. The color shifts from blue to green for higher wind speed bins.

Figure 6: Three box plots showing the biases of the comparison of
raw wind atlas data, remodeled data (“cell”) and site-specific data
(“site”) for the 48 onshore measurement sites for 100 m height. The
crosses mark the average of all stations (mean bias). The horizon-
tal bars in the box indicates the median and the box borders the
quartiles, respectively. Minimum and maximum are indicated by the
whiskers.

As a result of the remodeling process the bias of the
mean wind speed is reduced at all met masts. Before
the remodeling process the model showed a positive bias
(model winds were too strong) for almost all onshore
met masts of up to 27 percent and a negative bias of less

than 5 percent for offshore conditions. The mean bias
for all data sets before and after the remodeling process
is shown in Fig. 7. Obviously, the bias is low for the off-
shore met masts as there were only four data sets and the
deviation of the respective scaling factor to the mean fac-
tor is small in any case due to the similar surface charac-
teristics. For the onshore sites the effect of the remodel-
ing is remarkable. Most of the onshore data show a mean
bias well within the range of ±5 % with some exceptions
for very complex sites (Black Forest and Swiss Alps). It
seems that even with a site-specific correction mesoscale
data with 3 km resolution find their limit of reasonabil-
ity at those sites. An error of 5 % in mean wind speed
would result in an error for the wind turbine electric-
ity production of approximately 10 % to 15 %, depend-
ing on the wind speed frequency distribution and turbine
power curve characteristics (a factor between 2 and 2.5
is a reasonable choice). From our long year consultancy
experience an overall uncertainty of up to 15 % for the
mean annual power production appears to be acceptable
for the wind industry.

The mean bias over all measurements (Fig. 8) is close
to zero for all three data sets (onshore semi-independent,
onshore independent, offshore) while the standard devi-
ation and outliers (extremes of the bias) show a wider
spreading for the independent data set.

For a subset of the measurements the analysis was
also performed for 60 m, 80 m, and 140 m height (Ta-
ble 1). As expected, the bias and its standard deviation
decrease with increasing height as the influence of a ma-
jor uncertainty factor, namely the parameterization of
the surface characteristic in the mesoscale model, is re-
duced with increasing height. The bias reduction is high-
est from 60 m to 80 m and reduced also for the 80 m



124 M. Schneider et al.: A wind atlas for Germany and the effect of remodeling Meteorol. Z. (Contrib. Atm. Sci.)
31, 2022

Figure 7: Bias in mean wind speed for “raw data” (grey) and “remodeled site-specific data” divided into “semi-independent” (green) and
“independent” (red) onshore data and the offshore met masts (blue) for 100 m height.

Figure 8: Mean bias in wind speed, standard deviation and extreme
values for “semi-independent” (green) and “independent” (red) on-
shore data and the offshore met masts (blue) for 100 m height.

to 100 m step. The correlation of the hourly time se-
ries increases with height from 84.3 % at 60 m to 87.4 %
at 140 m.

In order to demonstrate the quality of the remodeled
mesoscale data set by a fully independent process, time
series of the wind atlas were provided to an institution
not linked to anemos GmbH for a given set of 66 sites
(Fig. 9). The analysis was performed on the whole by the
market competitor Ramboll Deutschland GmbH. Only
the site coordinates were known by the anemos team.
Ramboll’s analyses are in remarkable agreement with
the results shown before. With a mean bias of 0.4 %
and a root mean square error of 4.5 % for the measure-
ments between 85 m and 164 m height the results are

Table 1: Mean bias and correlation coefficient in wind speed for
measurements at different heights after the remodeling approach.

Height [m] No. of
sites

Bias [%] Bias [m/s] R [%]

60 38 3.82± 7.18 0.15± 0.31 84.3± 4.8
80 45 0.50± 5.02 0.01± 0.26 85.9± 3.9

100 52 0.08± 4.38 0.00± 0.24 86.9± 3.6
140 17 0.10± 3.45 0.01± 0.21 87.4± 2.9

Ramboll 85–164 66 0.40± 4.5 — 87.3± 2.3

only slightly higher than our results as is the correlation
coefficient with 87.3 %.

Poulos and Stoelinga (2020) compared mesoscale
model simulations with measurements at 105 sites with
2 to 10 meteorological towers each. No detailed infor-
mation about model settings and measurement heights
is available but for different model resolutions the bias
for wind speed was found in the range of 1.9 % for 200 m
resolution to 3.6 % for 600 m resolution. This data are in
line with our statement that with downscaled mesoscale
model data a bias for the mean wind speed below 5 % is
reasonable. This complies with the uncertainty require-
ments for the wind energy industry.

5.2 Correction of the annual cycle

The effect of correcting the annual cycle was also inves-
tigated for the Ramboll data set. For 39 met masts the
mean monthly deviation, its standard deviation, and the
extremes are shown for the raw wind atlas data (no re-
modeling) and the time series after the remodeling pro-
cess in Fig. 10. Like our analysis (Fig. 3) the correction
reduced the positive deviation in winter and the negative
deviation in summer and lead to a more realistic annual
cycle of the wind speed.
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Figure 9: Bias of 66 measurements for “raw data” (red) and “remodeled site-specific data” (blue) based on Ramboll analysis.

Figure 10: Monthly bias of 39 measurements for the Ramboll data, raw data (left) and corrected data (right). The boxes represent the
standard deviation and the thin bars show extremes.

5.3 Frequency distribution of wind speed and
direction

The wind speed frequency distribution may be approx-
imated by a Weibull distribution with scale parame-
ter A [m/s] and shape parameter k. The scale parameter
is linked to the position of the maximum of the distribu-
tion and is slightly larger than the mean wind speed. The
shape parameter k is a measure of the width of the distri-
bution i.e. the variance of wind speed. Fig. 11a shows the
absolute k values for the measurement and remodeled
simulation results. Most of the k values of the 52 mea-
surements are in a small box with a range of ±0.2. The
simulated mean and 25/75 quantile are slightly shifted
to higher values, but the outliers (extremes of k) are in
a similar range. Fig. 11b displays the bias in k (simu-
lation minus measurement) with a mean value of 0.06
and standard deviation of 0.1. The Weibull A parameter
shows a zero biased distribution with a standard devia-
tion of 4.1 % (Fig. 11c). The Weibull distribution com-
monly is considered to reasonably well represent the
wind speed distribution for Northern Europe long year
wind conditions.

The bias and correlation of the wind direction for the
52 measurement sites is shown in Fig. 12. The realistic
representation of the wind direction is of paramount im-
portance for the siting of wind turbines in a wind farm
as it governs the wind farm wake effect. Although wind
vanes are usually aligned carefully small mounting er-
rors cannot be excluded. The overall bias in direction
shows a positive mean value of 1.5° with a standard de-
viation of 3.0°. These deviations are covered in the un-
certainty of the wind vanes. No correction was made for
wind direction. The correlation reaches 95 % for more
than half of the stations. An example of the wind direc-
tion distribution is given exemplary for 100 m height at
site 19 (Fig. 13). The excellent agreement between sim-
ulated and observed wind direction is considered an ef-
fect of the reduced roughness influence at 100 m height
and the dominating pressure gradient.

5.4 Comparison with NEWA and EMD data
sets

Two other data sets from model simulations are quite
similar to the one discussed so far. There is the
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(a) (b)

(c)

Figure 11: Consistency of the wind speed frequency distribution of 52 measurements at 100 m height represented by Weibull parame-
ter k (a)–(b) and A (c).

New European Wind Atlas NEWA, (NEWA, 2020;
Gottschall et al., 2019; Witha et al., 2019; Gon-
zález-Rouco et al., 2019, Dörenkämper et al., 2020)
and the EMD-WRF EUROPE+ mesoscale data set
(EMD, 2020a). The official wind atlas data sets have
been downloaded from the respective data base and no
correction has been applied by us. Differences in model
version (anemos: WRF 3.7.1, NEWA: WRF 3.8.1) and
set-up (anemos: 50 vertical layers, NEWA: 61), parame-
terization schemes (anemos: Yonsei University (YSU)
planetary boundary layer scheme, NEWA: modified
Mellor–Yamada–Nakanishi–Niino (MYNN) planetary
boundary-layer scheme), boundary conditions (anemos:
ERA5 SST with hourly assimilation, NEWA: OSTIA

SST with 6-hourly assimilation), and simulation runs
(anemos: multi-year simulations with 1 month spin-up,
NEWA: 8 day simulations with 24 h spin-up) exist. No
such information is available for the EMD-WRF data
set. All three simulations, however, use the ERA5 re-
analysis as forcing data, a validated version of the WRF
mesoscale model and a 3 km horizontal grid resolution.
Use of the data for the wind energy industry is the main
purpose of all data sets. It is not our intention to discuss
potential discrepancies between these data sets in terms
of model configuration or simulation approach but rather
highlight the effect of the remodeling process. We used
those 22 wind measurements which were not part of the
determination of the remodeling parameters and calcu-
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Figure 12: Consistency of the wind direction of 52 measurements at a mean height of 98 m.

Figure 13: The wind roses simulated (left) and observed (right) at site 19 at 100 m height.

lated the overall bias and correlation for the 100 m height
data from the different simulations. Figs. 14a and b show
the bias and correlation in wind speed for the following
data sets:

a) NEWA data

b) EMD-WRF Europe+ data

c) anemos raw data without any remodeling or adapta-
tion process

d) anemos wind atlas after remodeling (= cell)

e) anemos wind atlas after remodeling site specific
(= site).

Data sets a)–d) are is the model output on the
3 km grid while for data set e) the respective 3 km data
have been itemized for the met mast site to be compared
with. This process uses orography and land-use infor-
mation to adapt the time series on the 3 km grid to the
surface characteristics in the immediate vicinity of the
met mast. The adaptation is based on findings from the
remodeling process. At this point it must be emphasized
that the general findings from the remodeling process
using 26 met masts are applied here to an independent
data set consisting of the remaining 22 measurements.
With a mean coefficient of 81.2 % the correlation of
hourly data is lowest for the NEWA data followed by
the EMD-WRF Europe+ data with 85.2 % and 86.8 %
for the three anemos data sets. Because the ERA5 re-
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Figure 14: Boxplots of the bias (left) and correlation (right) in wind speed for 22 independent sites. Compared are three versions of the
anemos wind atlas, namely the raw data (black) and the corrected data on a 3 km grid (orange) and the site specific data (green) with the
NEWA (blue) and EMD-WRF Europe+ wind (red) atlas.

analysis is the forcing for all simulations the difference
in the correlation might be due to various WRF model
configurations or simulation realizations (e.g. nudging
technique and time step, length of simulation period). In
addition, the anemos and EMD-WRF EUROPE+ hourly
data represent the average of 10-min instantaneous val-
ues whereas the NEWA data are based on 30-min in-
stantaneous values. An investigation into the sensitivity
of the correlation coefficient on model settings is not
our intent. However, a difference of 5.6 % in the cor-
relation seems to be rather large keeping in mind that
e.g. the electricity price is dealt on the Stock Exchange
half-hourly. The picture is quite different for the bias.
All three raw data sets without any remodeling or adap-
tation have a mean bias in a similar range between +0.6
and +0.8 m/s. After remodeling the bias of the anemos
wind atlas is overcompensated with a negative value
of −0.3 m/s. This is explained by the fact that met masts
for wind energy purposes commonly are positioned at
exposed sites compared to the average height of a model
grid cell. The site-specific mean wind speed corrects for
this overestimation and finally shows a mean bias of 0
with an extend of 0.3 m/s for the 25 % to the 75 % quar-
tile (50 % of the data within this box). Also, the spread
of the bias is reduced compared to the non-remodeled
data.

6 Conclusion and outlook

This paper is based on the idea that even small uncer-
tainties in wind speed may result in large uncertainties
for the wind potential and wind turbine power produc-
tion and may imply an increased risk for investments in
wind energy projects. Hence, reducing the uncertainty

of wind simulations to the extent possible is of particular
importance for applications in the wind energy sector.

This paper compares wind simulations and observa-
tions at 118 met masts and describes a remodeling ap-
proach to reduce the inherent difference between model
output and observations. The mesoscale model WRF is
used to simulate the wind conditions over Germany with
a horizontal resolution of 3× 3 km2 and a temporal res-
olution of 10-min. The analysis, however, is made with
aggregated hourly data. ERA 5 reanalysis data are used
for forcing purposes.

In order to minimize the inherent difference between
simulations and observations a remodeling approach is
applied which corrects simulated wind speed time series
taking into account differences in surface characteristics
(height and roughness variations) between model grid
cell and observation site. The remodeling process com-
prises 4 main steps followed by a site-specific adapta-
tion:

a) Correction of the annual cycle.

b) Correction for height difference between model grid
cell and measurement point. The speed-up factors are
deduced from CFD model simulations.

c) Derivation of regression parameter (slope and offset)
between simulated and observed wind speed for 8 di-
rection sectors at 26 measurement sites. Multiple lin-
ear regression analysis separately for slope and off-
set to derive a global parameter set. Remodeling the
mesoscale wind speed time series resulting in a re-
conditioned wind atlas.

d) Site-specific adaptation of mesoscale wind speed
time series.
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The “raw” wind atlas data (before step a), the re-
conditioned wind atlas data (after step c) and the site-
specific data (after step d) were compared to observa-
tions at 100 m height. The “raw” data showed a positive
bias of up to 27 % for the mean wind speed onshore and
a negative bias of less than 5 % for the offshore towers.
The remodeled data (after step d) showed a mean nega-
tive bias for onshore sites. This is explained by the fact
that measurements for the wind industry tend to be per-
formed at exposed sites. This effect was corrected for
with the site-specific adaptation.

Accounting for all 118 met masts and a height range
between 80 m and 160 m the mean bias in wind speed
is roughly within a range of 0.08 % and 0.50 % with
a standard deviation below 5 %. A 5 % uncertainty in
wind speed is in the range expected today for financial
considerations in the wind energy industry.

The wind speed frequency distribution expressed by
Weibull parameter showed a bias close to zero with a
standard deviation of roughly 4 % for the scale parame-
ter A and a mean bias less than 0.1 for the form param-
eter k. The small mean bias of 1.5 deg in wind direction
is not corrected for as it might be in the range of the
mounting uncertainty.

Comparison of the NEWA and EMD-WRF Europe+
wind atlas data with observations showed a mean bias
between +0.6 m/s and +0.8 m/s similar to our “raw” data.
The remodeling and site-specific adaptation process sig-
nificantly reduced the mean bias to 0.03 m/s with a stan-
dard deviation of 0.27 m/s.

A method was presented to minimize the discrepancy
between wind simulations and measurements by a re-
modeling process and a site-specific adaptation. The re-
sulting uncertainty is in a the range which is acceptable
by the wind industry even for financial considerations.
Such data sets will form an essential contribution to the
wind farm development process. The anemos wind at-
las data sets are commercially available via the awis
(anemos wind information system, awis.anemos.de) on-
line tool.
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